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SUMMARY 

Incorporation of the k--E turbulence model into Galerkin finite-element fluid-flow codes (which, unlike 
upwind finite-difference codes, have no artificial damping) can lead to severe iterative convergence 
difficulties. This paper introduces an alternative turbulence model (the q-f model) and an associated 
finite-element discretization method which are designed to overcome these problems. The new model 
forms the basis of a finite-element fluid-flow code which is robust and efficient. Furthermore, it is 
demonstrated on a practical example that the code can give good agreement with experiment on fairly 
coarse meshes. 

1. INTRODUCTION 

The finite-element (FE) method has been very successful in the analysis of incompressible 
laminar f l 0 ~ s . l . ~  Extension to turbulent flow in complex geometry requires the use of a 
model which can account for transport of turbulence quantities, for the turbulent stresses are 
not in general locally determined. The most widely used such model is the k--E modeL3 This 
relates the turbulent stresses to the mean rates of strain by use of an eddy viscosity, which is 
determined by the solution of transport equations in k (the turbulence energy) and E (the 
turbulence energy dissipation rate). These equations have generally been solved using 
upwind finite-difference codes4 which invariably contain some damping due to numerical 
diffusion. Incorporation of the k--E model into Galerkin-FE codes (which have no artificial 
damping) can lead to a number of difficulties, and serious problems with iterative con- 
vergence have been reported by several However, the present author7 also 
reported an analysis of the difficulties encountered, and isolated the underlying causes. An 
important conclusion was that the mathematical form of the k--E transport equations leads to 
discretized systems which are highly unstable with respect to fast converging iterative 
solution methods (e.g. Newton-Raphson iteration). However, mathematical forms for turbul- 
ence model equations were suggested that should give numerically stable discretized forms, 
and the present work develops these ideas further. 

The purpose of this paper is to report 

(i) the formulation and FE-discretization of a two-equation turbulence model which has 

(ii) the incorporation of the above model in a practical FE fluid-flow code, and 
(iii) the performance and accuracy of the code in the prediction of experimental results in 

been designed to be numerically stable, 

a turbulent recirculating flow. 
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In the following, all variables are rendered dimensionless with respect to characteristic 
length L and velocity V (the Reynolds number then being given by Re= LVlu where v is 
the dynamic viscosity) and the summation convention is used throughout. 

2. DYNAMICAL EQUATIONS 

The equations governing the steady two-dimensional (or axisymmetric) flow of an incom- 
pressible turbulent fluid are 

( x z k )  = 0 for x in R 
l a  

x; a x ,  
-- 

where p is the mean pressure, u is the mean velocity, and S,, is the Kronecker delta. In 
plane geometry (a = O), the velocity components ul, u2 are in Cartesian co-ordinate 
directions x l ,  x2, respectively. In axisymmetric geometry (a = 1) the components ul, u2 are in 
the axial direction x1 and the radial direction x2, respectively. The dimensionless difhsivity 
of momentum is given by: 

n; = (1 + (3) 
where pt is the dimensionless eddy viscosity. The equations are solved in region R subject to 
boundary conditions of the general form 

U = Q  for x on anl (walls, inlet) 
TI = u2 = 0 for x on 3% (symmetry line) 
Tl = T. = 0 for x on an3 (general outlet) 

where the notation Q indicates a prescribed function of x, dR,, a%, 30, is a partition of the 
boundary an and, if n is the outward pointing normal to an, the surface traction T is defined 

3. TURBULENCE MODEL 

The above dynamical equations can be solved on specification of the eddy viscosity pt, 
achieved here by the use of a two-equation turbulence model. The variables which have been 
selected in place of k and E to characterize the large scale turbulence are q, the (positive) 
square-root of the turbulence energy and f, a frequency, which can be interpreted as the 
vorticity of the large scale eddies. Then, the eddy viscosity is given by 

pt = Re C,q21f (5 )  
and the transport equations for q and f are 
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where 
K = q2, F=f2 

and where the dimensionless diffusivities and sources are defined by 

7T* = b,, 

Tf = c,q2i(2uff2), 

Q, = IS, - C,q2/1 

Qf = C,G& - C2ff 
Here, the quantities cr,, uf, C,, C,, and C2f are all constants, the Prandtl-Kolmogorov length 
scale 

E = c, Idf I 
has been introduced, and the quantity S, is defined by 

The terms 4 and €+, which represent secondary sources, will be discussed later. An 
alternative form of equation (7) is 

where 

and 
F ' = l n f 2  

..; = C,q2/2ur 
These are, of course, analytically equivalent to equations (7), (8) and (11) but they give 
distinct discretized forms as can be seen in Appendix 111. Boundary conditions are of the 
general form 

q=G, f = f  f o r x o n a a ,  

The above set of equations are rather different from those commonly used for turbulence 
modelling. However, with the definition 

s, = L:y, 
equation (6) is equivalent to the k transport equation of the familiar k-1 one-equation 
model,' a, being identified as the turbulent Prandtl number for k.  Furthermore, with this 
choice for & and suitable choices for the quantity I?,, the equations set out above (i.e. (5) to 
(14)) can be made formally equivalent to most two-equation models now in use (e.g. see 
Appendix I). However, in the present work €+ is taken to be zero, and the resulting 
turbulence model is termed the q-f model. 
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The choice of a frequency as the second turbulence parameter in preference to the 
dissipation rate is not new. Kolmogorov9 was the first to suggest such a variable, and it has 
been used in the form W = f" by Spalding" for a k-  W model. Saffman" also proposed such 
a model, and this has subsequently been developed into the Wilcox-Traci model.I2 The 
dissipation rate E is by far the most widely used second variable, but there does not appear 
to be any compelling reason for this. It is true that an exact transport equation for the 
dissipation rate, defined in terms of the fluctuating Cartesian velocity components uk by 

(where the overbar denotes a time average) can be written down, but the closure of the 
model to eliminate high order correlations results in an equation which could be written 
down on purely dimensional grounds (e.g. see Reference 13). Also, Launder and Spalding14 
cite an advantage for E over W or kl, in that no special modelling is required in the fully 
turbulent region near a wall. However, this is also true of the f variable (with rP, = 0). The 
q-f model would therefore appear equally valid as k--E with the added advantage, as will be 
seen later, of numerical stability for the FE-discretized form. 

Detailed optimization of most two-equation model constants to obtain the best fit to 
experimental results has to be carried out by numerical analysis of real flow. However, a 
good estimate for the value of C,, can be obtained by an analytic solution for the decay of 
turbulence behind a grid. Similarly, the well known 'log' layer near a solid wall provides a 
relationship between C,,, C,, and of (see Appendix 11). Thus: 

K 2  
C1,=Cz,-- 

ufc;J2 
and 

where K is a constant in the law of the wall (see section 5 ) .  If uf is of order unity, C,, - 0.42. 
These values for C,, C,, agree quite well with those derived from the recommended set of 
constants for the k--E model given by RodL3 The values CIf = C,, - 1 = 0.44 and Czf = 
C,, - 1 = 0.92 are obtained by transforming the source terms of the k - - ~  equations (Appen- 
dix I) into the corresponding terms of the f equation, though since the k--E and q-f models 
are not equivalent, the correspondence cannot be exact. There remains some freedom to 
adjust a, around unity, and in fact the values Clf = 0.58, C2, = 0.92, oq = 1 and a, = 1.4 have 
been used in the calculation in this paper, as explained in section 7.1. 

4. FINITE ELEMENT DISCRETIZATION 

The momentum equations (1) are discretized by the Galerkin-FE method in the usual way,15 
with the continuity constraint being handled by a penalty-augmented Lagrangian-multiplier 
(PALM.) method.16 Eight-noded quadrilateral elements of the serendipity type" with quad- 
ratic velocity and linear pressure variations are used in the interior of the flow, with special 
elements at the wall. The former are referred to as 'type 2' whereas the special elements" 
are the types 3 and 4. These have cubic velocity variations perpendicular to the wall and 
extra nodal variables consisting of the normal gradients of velocity on the grid edge (see 
Figure 1). 

It was shown in Reference 7 that discretizations of non-linear differential equations can 
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Figure 1. Wall element (type 3 or 4) 

have very different properties from the original equations. In particular, multiple discrete 
solutions can exist in addition to the desired solution, and in a complicated equation system 
this can lead to very unstable iterative performance. However, it was also suggested, after 
work by Meyer," that a transport equation (in variable 4, say) should produce a stable 
discrete form provided that 

(i) diffusivity is positive everywhere in R and for all admissible values of 4, and 
(ii) the source is monotonic decreasing in 4 everywhere in 0. 

The q-f transport equations (6) and (7) have been chosen to comply with these require- 
ments. Neglecting convection and the secondary source terms Rf, it is easy to see that Qf is 
monotonic decreasing with f' and that 7rf (the diksivity of f') is positive for all q f  0 and 
f<a. Similarly for the q equation when 1>0 is held constant. Provided that the discretiza- 
tion preserves these qualities, stable iterative performance can be expected of each individual 
equation. 

The discretization used for the q-f model equations is as follows. The variables q, f, K and 
F (equations (8)) are interpolated by the same basis functions as used for the velocity 
components, whereas the quantities q,, vq, Tf, 1, Q,, Q,, & and & are all interpolated using 
serendipity basis functions. The quantities S,, S, (appearing in Q, and Qf) are incorporated 
as averaged values for each element, obtained by integrating equations (14) and (19), 
respectively over the element areas7 The usual Galerkin method is then applied to equations 
(6) and (7) whilst the algebraic relations (3) and (8) to (13) (having eliminated p t  using 
equation (5)) are required to be satisfied pointwise at the grid nodes. In addition the normal 
gradients of equations (8) are required to be satisfied at the gradient nodes of types 3 and 4 
elements. The discretization of the alternative f equation (15) is entirely analogous to that 
set out above, and the resultant set of discrete equations is set out in Appendix 111. 

The discretization described minimizes the complexity of the discrete equation system16 
whilst preserving as much as possible the described characteristics of the differential 
equations. For instance, if convection and secondary sources are neglected and type-2 
elements are used, the discrete q-equation is linear in the nodal values [q'li (see Appendix 
111), and then demonstration of the existence and uniqueness of the solution for [q2Ii is a 
trivial matter. However, the numerical procedure will seek a solution for qi (i.e. qi and not 
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[q2Ij will be treated as the unknown) since this will occur in the convection term. This 
solution will obviously not be unique, for the equation is insensitive to the sign of qi. 
However, ignoring convection, it is equally obvious that any negative qi occurring in an 
iteration sequence can be corrected positive, so that the desired solution is obtained. The 
exception to this is when the unique solution for [q2Ii is negative at some node, in which case 
there is no real solution for qi. This point will be returned to in section 7.2. 

The properties of the non-linear discretized f-equations (either equation (7) or (15)) are 
illustrated in Appendix N. For a single one-dimensional element, it is shown there how the 
above conditions on the diffusivity and source terms ensure the existence of a unique 
solution for f" when convection is neglected. However, as with the q-equation, the existence 
of a real solution for f on every node, for any grid, and for any set of boundary conditions, 
cannot be guaranteed. Again, this will be discussed in section 7.2. 

5 .  WALL BOUNDARY TREATMENT 

As pointed out in Reference 16, it is not convenient to  calculate the momentum field right 
up to a solid wall, nor is the turbulence model valid in the near-wall region. The 'wall' part of 
the dR, boundary is therefore understood to be displaced a small distance into the flow, 
where the fluid can be assumed to be fully turbulent. Conditions are then imposed on the 
boundary which match the interior flow to assumed behaviour in the wall region. The 
conditions adopted are the same as those in Reference 7 and therefore will only be explained 
briefly here. They are based on the logarithmic law of the wall, but with a modified scaling of 
the velocity and distance from the wall to ensure that sensible conditions are imposed at 
reattachment points. For the turbulence fields, it is assumed that there is a constant k ( = q2) 
region near the wall where the length scale is proportional to  wall distance. 

If u, v are velocity components and x, y are local co-ordinates tangential and normal to 
the wall, respectively, the matching conditions are as follows: 

where the scaling is defined by 

1 
Y i  

TW u (or v) = - u+(v+); 
uk 

Here rw is the wall shear stress, uk is given by Cit4q and the constants K and C take their 
usual values 0.419 and 5-45, respectively. 

These matching conditions are easily discretized using the normal velocity gradients dq, dvi 
available at the wall nodes of type 3 and 4 elements. The discrete forms of equations (21) 
and (22) are' 

q = Ahi 8% (In (Ck'" Re Ahiqi) + KC) 
~ I J ,  = Ah (4 dvi - I J ~  a&), 
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which are to be satisfied for every 'wall' node i, where Ah is the displacement of the node 
from the wall. Equation (24) is also applied pointwise, but (23) is imposed as a natural 
boundary condition by leaving qi free at wall nodes. As pointed out in Reference 7, this is 
consistent with an equilibrium wall layer whilst placing minimum restriction on q where 
equation (23) is not strictly true (e.g. near a reattachment point). 

6. SOLUTION OF THE DISCRETE SYSTEM 

The discrete transport equations for q and f are numerically stable when considered 
separately (i.e. when S, and 1 or q, respectively are held constant). Thus there is considerable 
advantage to be gained by treating them separately in the solution algorithm for the whole 
system. Furthermore, the coupling between certain of the equations in the system is not very 
strong. The turbulence variables only enter the dynamical equations through the diffusivity 
nu and the wall boundary conditions. Similarly, the q variable only enters the f-equation 
through the diffusivity and wall conditions. Thus an algorithm which solves these equations 
separately, in sequence, should not only prove numerically stable at each stage, but should 
also converge rapidly overall. 

For the procedure described below, two divisions are made between the variables, one 
between the dynamical variables (u, p )  and the turbulence, and another between the q and f 
turbulence variables. Within each group, the discrete equations are solved by Newton- 
Raphson (NR) iteration, with the linear system in each iteration being handled by a direct 
frontal method. These NR iterations are terminated when the error (defined as the maximum 
error in a variable divided by the maximum value of that variable) reaches some predeter- 
mined level ENR. The full algorithm is then as follows: 

Step 1 
Make initial guesses for u (zero everywhere, say), pt (a constant, say) and E (proportional 

to wall distance or shear layer width, say). From these, derive guesses for q, f from equations 
( 5 )  and (13). 

Step 2 
(i) Update q, (equations (3) and ( 5 ) )  

(ii) Solve* the dynamical equations and update (u, p) 

Step 3 (Repeated until the q and f updates make changes of less than some value G) 
(i) Solve* the f-equation and update f 
(ii) Update 1 (equation (13)) 
(iii) Solve* the q-equation and update q 

Go back to step 2 unless changes in the variables are all less than some value Eo (i.e. 

In the above, solve" indicates an NR iteration sequence. Typical values of the accuracy 

Step 4 

overall convergence is achieved). 

criteria for best efficiency are ENR = lo-', E, = 10-1 and Eo = 3 x 

7. PERFORMANCE OF THE 4-f CODE 

7.1. A sudden pipe-expansion 

The prediction of flow in an axisymmetric sudden pipe-expansion provides a good 
illustration of the performance of the q-f code. Figure 2 shows the geometry and basic 
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Figure 2. The jet-in-pool experiment (with FE grid) 

features of the BNL Jet-in-Pool where a turbulent jet (coaxial with the pipe) 
emerges from a nozzle to mix with a slower moving annular stream. This results in complex 
inlet profiles for the subsequent pipe-expansion, which produces a shear layer spreading 
downstream from A, and a region of recirculation ABC with reattachment at C .  The 
expansion ratio (downstream to upstream pipe diameter) is 0.476 and the Reynolds number 
based on diameter D and bulk velocity U downstream of the step is 6.2 x lo4. 

Also illustrated in Figure 2 is the FE grid used for calculations. It consists of 79 
quadrilateral elements displaced from the pipe wall by Ah = 0.02 and displaced from the 

X,= 0.07 0.5 1.0 1.5 2.0 2.5 3 .O 

I I I I I I *  

0 1  2 3  5 u1 

Figure 3. Axial velocity profiles compared with experiment 
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expansion face by Ah=0.07  (corresponding with the first measurement station in the 
experiments). The elements used were type 2 in the interior and types 3 and 4 at the edges as 
shown. Wall treatment was as described in section 5 except at the corner node near B, where 
the velocity components were set to zero. Experimental data for u, q and f (where f and q 
were derived from measurements of normal and shear stresses and mean velocity gradients) 
were used as boundary conditions at inlet, and the outlet was left free so that the natural 
conditions zero surface traction and zero q’ and f’ normal gradients are satisfied there. On 
the symmetry axis, the normal gradients of u,, f and q were set to zero explicitly. 

As yet, there is no ‘recommended’ set of constants for the q-f model as there is for k--E. 
Therefore C,, (and hence uf through equation (20)) was adjusted to give a good fit of the 
centre-line u, prediction to experiment. A PALM penalty parameter of unity was found to 
give optimum continuity satisfaction. Then, with the values of the constants listed in section 
3, the predictions for the ul, q and 1 (= C,cllf) fields (using the ‘log’ form of the f-equation 
(15)) are shown in Figures 3, 4 and 5. The agreement with experiment, especially for u1 and 
1, is very good. 

The initial guess used for the above calculation was u = 0, pJRe = 1/70 and 1 = Ck’4~y  in 
the wall elements and constant in the interior. Convergence of the numerical scheme was 
achieved in 19 (u, p) NR-iterations, 18 f NR-iterations and 18q NR-iterations, taking a total 
of 108s on an IBM 3081 computer (which is approximately twice as fast as an IBM 
370/168). 

7.2. Discussion 

The agreement of the q-f model results with experiment in the above example is very 
encouraging, though the model constants should obviously be fitted over a wider range of 
data before definite recommendations can be made. In particular, it was noticed that the 

X ,  0.07 0.5 1.0 1.5 2.0 2 .5  

x 2  ,, 
0.4 - 

0.3 - 

0.2 - 

0.1 - 

O OL 0 

+ L+ * 

\ + Experiment \ 
-FE q-f model 

predictions 

I 

Figure 4. Profiles of q compared with experiment 
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Figure 5.  Length scale profiles compared with experiment 

fitted value of C,, was fairly sensitive to the inlet boundary conditions, in which there is 
inevitably some experimental uncertainty. Also, it is probable that for problems where wall 
effects exert a greater influence (e.g. flows with heat transfer). it will be necessary to improve 
the wall treatment near separation or reattachment points. However, it should be noted that 
the work in this paper does not rest entirely on the physical realism of the q-f model. Extra 
physical modelling can be accommodated in the secondary source term 4. If such terms 
reduce the numerical stability of the f-equation, they can be added in the later stages of the 
solution algorithm, when the ‘initial guess’ is sufficiently good to ensure convergence. 

The cost factor of the code (defined as the cost of a turbulent calculation compared with 
that of a laminar one on the same mesh) on the sudden pipe-expansion is approximately 5. 
The NR-procedure computer cost is proportional to (bandwidth)” x (number of degrees of 
freedom) when the bandwidth is large. Thus a simultaneous solution of the system would 
have a cost factor of at least 8, even if it converged reliably. On a larger two-dimensional 
grid, the present algorithm has a cost factor of about 4, and in three dimensions this could be 
expected to be about 3, for the cost of q or f updates would then be negligible compared to 
(u, p). Considering that, as has been shown on the sudden-expansion example, good results 
can be obtained on fairly coarse meshes, this level of performance is extremely good. 

As pointed out in section 4, it cannot be guaranteed that a real solution for q and f will 
exist on every node. No problems were experienced with the example solution given, but if 
the FE mesh cannot resolve a variation in q or f predicted by the turbulence model and large 
overshoots in the numerical approximation for q2  or f” result, then that NR step may fail to 
converge. In practice, this can occur in the vicinity of ‘difficult’ boundary conditions, very 
near a re-entrant corner for instance. However, unlike the k--E code described in Reference 
7, the turbulence fields remain stable during the NR iterations in most of the flow, only 
showing large changes near the boundary causing the trouble. Thus, by monitoring the early 
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steps in the solution algorithm, inconsistent boundary conditions or areas of the mesh 
requiring refinement can be identified. This is entirely consistent with the usual methods of 
using Galerkin-FE codes, where (converged) spatial oscillations indicate the need for grid 
refinement .22,23 

8. CONCLUSIONS 

The q-f turbulence model and associated discretization method introduced in this paper 
have enabled a Galerkin-FE fluid-flow code to be constructed which is robust and efficient. 
This is in sharp contrast with similar codes based on the k--E model. Furthermore, as has 
been demonstrated, the code can give good agreement with experiment on fairly coarse 
meshes. 

It remains to test the applicability of the code in a wide range of geometries, and many 
changes and improvements are sure to emerge. However, such developments can be 
incorporated quite naturally into the computational framework presented here. 
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APPENDIX I 

The relationship of the q-f model to the k--E model 

The q-f turbulence model used for the calculations in this paper has Rf set to zero. With 
other choices for Rf (and & defined by equation (18)), the equations can be made 
equivalent to other two-equation models. An example is the k--E model. 

The k--E transport equations are 

where the values of the constants C,, CIS, C2,, and a, are 0.09, 1.44, 1.92, 1.0 and 1.3, 
re~pectively.~ When E is identified as C,q3/1 and k = q2, it is easy to show that equation (25) 
is equivalent to the q-equation (6). By changing the variable in the &-equation (26) from E to 
f ( = ~ / k )  and q, one can show (after some manipulation) that equation (6) and (7) are 
equivalent to the k--E model above if 

and the constants are modified to be 

q==,, Clf=CIE-1, and C2,=C2,-1. 
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APPENDIX I1 

Fitting of the q-f model constants to some idealized flows 

In some simple flows, two-equation model transport eqqations can be solved analytically, 
enabling values of some of the constants to be fixed by reference to experiment (see 
Reference 8). Two examples are given below. 

(i) Decay of turbulence behind a grid. It can be demonstrated experimentally that the 
turbulence energy in the flow downstream of a plane fine-wire grid varies as approximately 
the inverse of distance from the screen, x (i.e. k-a2x-’, where a is some constant for a 
particular flow). Since the mean velocity u, is uniform, the q and f transport equations (6) 
and (7) can be written 

2u,-=-qf dq 
dx 

df u, - = -C2,f 
dx 

(27) 

where the length scale has been eliminated and streamwise diffusion is ignored. Substituting 
q - U X - ~ ’ ~  into equation (27) gives f - u,x-’, and substituting this in turn into (28) yields the 
result that C,, is approximately unity. 

(ii) Turbulent flow near a solid wall. The fully turbulent flow near a solid wall has been 
well documented, and the main experimental characteristics are incorporated into the wall 
conditions given in section 5 of the paper. In addition, in equilibrium wall layers (e.g. away 
from separation and reattachment) convection is negligible and production of turbulence 
energy balances dissipation (e.g. see Reference 8), giving the result 

rg2 = uk = ckt4q, a constant. 
Equation (21) gives 

du TW 

dy KUkY 

-=- 

and equation (24) is 

Then, substituting equations (29) to (31) into the f-transport equation (7) readily gives the 
relation 

K L  c,, = c,, - - ufc;” * 

APPENDIX I11 

The discrete form of the q-f model equations 

Using suffices i, j ,  etc. to denote nodal values (with the notation [ Ii to denote the value of 
an expression at node i) and assuming the use of type 2 elements, the discretized q-f model 
equations are as follows. 
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The q-equation: 

(32) 
1 2 

2%,iqjBijk,m +- li[q2]jAijk,mm = (< [lsqlj +[lSuIj  - c w [ q 2 / l ] j ) q k  

the f-equation: 

(33) 

= Cp[dflj (34) 

Cw 
2Uf 

%,i@%k,rn +- [q2/lf21i Lf21jAijk,mm = ( c w c l f [ & l j  - C2f[fZl j )qk 

with 

The alternative form of the f-equation (15) gives the following discrete form: 

(35) cw 
2Uf 

%n,@ijk,m +- [q2]i[ln f21jAijk,mm = (cwC~f[SuIj - C2f[f21j)qk 

The momentum diffusivity is given by 

The matrix quantities A, B and E are defined by 

Eii = Wi Wj dx b 
where Wi(x) are serendipity basis functions.” The nodal values of Su, Sq appearing in 
equations (32) and (33) are defined by: 

where the summations range over all the elements e s h e g  nod%and Oe denotes the 
region covered by element e. The area-weighted averages (&), and (Sq)e are calculated from 

and 

APPENDIX IV 

Single element discretizations of the f-equation 

Consider a one-dimensional f-equation (in interval 0 5 x 5 1, say) with convection neg- 
lected, Rf = 0 and, for simplicity, with the diffusivity given by IT = d/f2, where T’ is constant. 
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Equation (7) then becomes: 

where 
F= f ”  

If r and F are interpolated using quadratic one-dimensional versions Wi(x) of type 2 
element basis functions ( i  being the node label), the FE discretization procedure yields 

where F, is the value of F(or f”) at node j .  For a single element (1 I j S 3), with the boundary 
nodes fixed at Fl = a > 0 and F3 = p > 0, respectively, equation (41) reduces to a simple 
quadratic equation for the single unknown F,: 

where 

and 

aF; + bF, + c = 0 

a = 12(a + p)/ap + l6CZf/?r‘ 
b = 6 + 15CO/d + (a2+ p2)/ap - 2CZf (a  + p ) / d  
c = -8(a + p)  

1 

CO= CcClfl SuW2 dx >0. 

The solutions of equation (42) are obviously 

F” = - b [ 1 f .I( 1 - 4 3 1. 
2a 

Consider now three situations: 

(i) Difisivity greater than zero, sources monotonic decreasing in F 
When ?rf > O  and Czr >0 ,  the quantity ac (0 and thus there are two solutions for F2, one 

negative and one positive. But since Fz is defined by fi where f2 is assumed real, only the 
positive F2 is admissible. Thus, there is a unique solution for F2. 

(ii) Diffusivity less than zero, sources monotonic decreasing in F 
When ?r‘ < 0 and C,, > 0, there is the possibility (if )mfl < 4C2@p/3(a + p)) that ac > 0, and 

then both solutions of (42) will be of the same sign. The sign could be positive or negative 
according to the size of Co. The former would imply two solutions for F2 (and hence f$), and 
the latter would imply that there are no real solutions for f2. 

(iii) Difisivity greater than zero, sources monotonic increasing in F 
When ?rf > 0 and Czf < 0, there is again the possibility that ac > 0. Both solutions of F2 are 

then positive and two solutions for fs exist. 

Summarizing the above results, it is clear that for a single one-dimensional element, 
sufficient conditions for the existence of a unique discrete solution for f are that diffusivity is 
positive and that the source term is monotonic decreasing in F. If either of these conditions is 
relaxed, there is a possibility that the solution is not unique or that no real solution for f 
exists. 
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The alternative form of the f equation (15) reduces to the following discrete equations 
under the assumptions described above: 

On a single element, this becomes 

where 

and 

It is then easy to show, by simple graphical arguments, that the above results are also valid 
for this discretization. 
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